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Height probabilities in solid-on-solid models: I1 
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Abstract. The RSOS-3 model is a sequence of two-dimensional solid-on-solid models with 
integer heights restricted between 1 and r - 1 and nearest neighbours differing by 0, 1 or 
- 1 .  It has an exact solution manifold with four regimes of distinct physical behaviour 
along which the height probabilities in the bulk of the system can be calculated. Using 
some results of the previous letter in this series, we calculate the height probabilities for 
two of the regimes. Appropriate order parameters are defined and their critical exponents 
calculated. 

1. Introduction 

In a previous letter (Forrester and Andrews 1986, hereafter referred to as I )  we 
considered some new solvable classes of two-dimensional lattice models. These models 
are most naturally presented as solid-on-solid ( S O S )  models. At each site j of the 
square lattice, we let there be an integer height variable I , ,  1 s I ,  s r - 1 .  For a given 
integer n( n 3 2), we imposed the constraint that nearest-neighbour heights must differ 
by 

0, * l ,  1.2, . . . , *(n - 1)/2 

1 . 1 ,  *3, * . * , *(n - 1 )  

( n  odd) 

( n  even). 

We denoted such sequences of models by Rsos-n. 
As noted in I, the RSOS-2 model is the original eight-vertex SOS model of Andrews 

et a1 (1984). The parametrisation of the weights along the solvable manifold for the 
RSOS-3 model was given by Kuniba et a1 (1986) and for all other n by Date et a1 (1986a). 

The solvable manifolds of each of the RSOS-R models have four distinct regions of 
physical behaviour (denoted by regimes I-IV). For the RSOS-2 model the free energy 
and height probabilities have been calculated exactly in each of the regimes. The 
calculation turned out to be particularly rich, both from the mathematical viewpoint, 
yielding generalisations of the Rogers-Ramanujan identities (see, e.g., Andrews 1976) 
and from the physical viewpoint, yielding explicit realisations of allowed critical 
exponents according to the conformal theories (Belavin et a1 1984, Friedan er a1 1984, 
Huse 1984, Zamolodchikov and Fateev 1985). 

Will the Rsos-n models for n 2 3  exhibit the same richness? In I we gave the 
polynomials representing the height probabilities as combinatorial sums for regime 111 
of the RSOS-n models. For n = 3 we transformed these polynomials to a series involving 
Gaussian polynomials (this is the first step in Schur’s (1917) proof of the Rogers- 
Ramanujan identities, and also the approach adopted by Andrews et a1 (1984)). The 
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4466 P J Forrester and G E Andrews 

derivation of this result involved the discovery of some new combinatorial identities, 
and it appears in general that study of the Rsos-n model will again lead to new results 
in combinatorial analysis. 

In this paper we use the polynomials given in I for the RSOS-3 model to compute 
the critical exponents P k  for regimes I1 and 111. In regime I1 we find essentially those 
Pk of regime I1 in the RSOS-2 model (but with r replaced by 2 r ) ,  which can be understood 
as a consequence of the underlying symmetry of the ground state. In regime 111, for 
a given r, we find P k  of the same arithmetic form as in regime 111 of the RSOS-2 model, 
but the numbers of such Pk are different ( 2 r -  5 for RSOS-3, r - 3  for RSOS-2) .  The 
results again appear interesting from the viewpoint of critical phenomena. 

The presentation of this paper assumes some familiarity with our previous works 
(Andrews et a1 1984, Forrester and Baxter 1985, Forrester and Andrews 1986). 

2. The solvable manifold of the RSOS-3 model 

The standard way to proceed in obtaining an exact solution manifold for a two- 
dimensional interaction-round-a-face lattice model is to solve the star-triangle 
equations (STE) (Baxter 1982). Let W ( a ,  bl c, d )  denote the Boltzmann weight of a 
face of the lattice; a, b, c, d being the heights at the sites of the SW (south-west), SE, 
NW and NE corners respectively. Let W’ and W denote the Boltzmann weights of 
the same model but with different values of the couplings. Then the STE is 

1 W ( b ,  cIg,a)W’(g,alf,e)W’(a,cle,d)=C w(a,d l f ;e )W’(b ,c /a ,d)W“(g ,b l f ,a )  
a a 

(2.1) 
for all allowed height values b, c,. . . , g. 

Let us recall some properties of the solution of the STE for the RSOS-2 model (Baxter 
1973, Andrews et a1 1984). 

(i) W is parametrised as a Jacobi theta function, which fcr a given value of the 
maximum height r - 1 depends on two variables U and p .  The variable U acts like an 
anisotropy variable. In particular 

(2.2) 
where S denotes the Kronecker delta. The variable p is a temperature-like variable. 
In particular criticality occurs when p = 0. 

(ii) If W ( a , b ( c , d ) =  W ( u , ~ ) , t h e n  W ’ =  W(u’ ,p)and  W“= W ( u ” , p ) w i t h u ’ - U =  
U’!. 

( i i i )  For a given value of r, there is a constant A such that replacing U by A - U  

rotates each weight by 90” 

W ( a ,  bj c, d ;  U = 0) = 

W ( a ,  b l c , d ;  ~ , p ) = ~  W ( c , a j d ,  b ;  A - u , p ) .  
4 b  4% ( 2 . 3 )  

The prefactor on the right-hand side of (2.3) leaves the partition function and height 
probabilities unchanged. 

(iv) W has the diagonal reflection symmetries 

W ( a , b l c , d ) =  W ( a , c l b , d ) =  W ( d , b l c , a )  (2.4) 

W ( a , b l c , d ) =  W ( r - u , r - b I r - c , r - - d ) .  ( 2 . 5 )  

and the ‘top-bottom’ symmetry 
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Kuniba et a1 (1986) found a solution of (2.1) for the RSOS-3 model with all the 
above properties, the only difference being that each of the weights are parametrised 
as products of two theta functions. They conjectured that the RSOS-n model possesses 
an exact solution manifold on which the Boltzmann weights can be parametrised as 
linear combinations of ( n  - 1) theta functions. This was subsequently confirmed by 
Date et a1 (1986a) who properly understood the nature of these solutions as a fusion 
of the weights for the original RSOS-2 model. It was then noted by Akutsu et al (1986) 
that the fused weights are closely related to (if not precisely) periodic Z-invariant 
RSOS-2 models (the concept of Z invariance is due to Baxter (1978); see Perk and Wu 
(1986) for a review). This would have the consequence that the height probabilities 
for each of the Rsos-n models are precisely the same. We find that this is not in 
general true, so this feature of the exact solution requires further study. 

It is our aim to calculate the height probabilities for the RSOS-3 model. Due to the 
symmetries (2.4) and (2.5) there are seven different classes of face weights. Following 
Kuniba er a1 (1986) we label them AI ,  B I ,  C,, DI,  PI,  9, and RI (see figure 1). 

We noted above that there are four regions of different physical behaviour. If we 
replace p by p”’ in the usual definition of the 19~ function (this convention is used by, 
e.g., Baxter and Andrews (1986), equation (3.1)) then these regions are 

regime I 

I1 

111 

IV 

r.3 It1 I t1  

rj 
f12 

1.2 

/*1 / + 2  

/ * 2  

/*1 / *1  

-57/2+A <Re(u)<O 

- 5 7 / 2 + h  <Re(u)<O 

O <  Re(u) < A 

0 < Re( U )  < A 

‘+M1 

Figure 1. The seven classes of weights for the RSOS-3 model and the mapping from it to 
the KAW model as presented by Kuniba et a/ (1986). 
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where 

A = ~ / 2 r .  (2.7) 

To calculate the height probabilities it is most convenient to use the conjugate 
modulus form of the el function. Define 

p = exp( - E )  

y = exp( -4 r2 /  E )  

x = e x p ( - 4 7 ~ ~ / r ~ )  

w = exp( - 4 m /  E )  

and 

(2.9) 

In terms of the conjugate modulus representations, the relevant features of the exact 
solution for purposes of calculating the height probabilities are as follows. 

(i) In the limit E + 0 the model is in its ground state. For given boundary conditions, 
this ground state is constant for all 1x1 < IwI < 1 (regimes 111, IV) and 1 < IwI < ~ ( x / y l " ) ~  
(regimes I, 11). It changes discontinuously on passing through the endpoints of these 
regimes. 

(ii) The special value 

w( U, b 1 C, d ; W = 1) = 80,d. (2.10) 

(iii) The rotation symmetry 

(vi) The inversion relation 

E ( x /  w ) E  ( x w ) E  ( x 2 w ) E  ( x ' /  w )  
W(d, a1 b, C; w) W(c, a1 b, d'; w-') = 8d.d' (2.12) 

C ( E ( X ) ) 2 ( E ( X 2 ) ) 2  

which holds for all allowed heights a, b, d and d' .  Here we have abbreviated E ( u ,  y )  
as E(u) .  

(v)  The functional relation 

(2.13) 

where 

4a = x a 2 / 2  -a12 Y .  

(vi) The limiting value 

W(U, b( c, d ;  w) - wlb-cl'28a,d as x + o .  (2.14) 

The notation (2.8) is relevant to regimes I 1  and I11 when p (and consequently y )  
is positive. In regimes I and IV properties (i)-(v) still hold but W is not diagonal in 
the x + 0 limit. For this reason we have not been able to make any progress in calculating 
the height probabilities for regimes I and IV. 
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3. Height probabilities for the large but finite lattice 

We aim to calculate the probability Pa that a site deep within the lattice has, for given 
boundary conditions, the value a. This we do using the corner transfer matrix technique 
(Baxter 1982). 

Fixing the boundary heights has the effect of singling out a ground state. In both 
regime I1 and 111 the heights of the ground states do not change along a diagonal. 
Thus the ground states are specified by the heights along a row. In regime I1 the 
ground-state heights along a row are periodic of period 2( r - 1). A unit cell has the 
heights in order 1,2, . . . , r - 2, r - 1, r - 1, r - 2, . . . , 2 ,  1. In regime 111 the gound-state 
heights along a row are 1, 1+1, 1, 1+1, . . .  ( 1 S l S r - 2 )  and 1, 1, 1 , . . .  ( 1 s l S r - 1 ) .  
Thus the ground state in regime I1 can be singled out by choosing the boundary 
conditions at the end of a row as (6, 6 + 1) or (6, 6 - 1) while for regime 111 we have 
the three types (6 ,6  + l ) ,  (6 ,6  - 1) and (6,b).  Let us denote by P z (  6, c) the probability 
in regime X that the centre site of the lattice has height a, given that the boundary 
heights are b and c. From the 'top-bottom' symmetry of the weights (2.5) we have 

(3.1) P z ( 6 ,  c)  = P:-a( r - 6, r - c )  

so it suffices to calculate 

P:(b, 6 + l )  PL"(6, 6 + l )  P:'(6, 6) (3.2) 
for all allowed values of 6. 

The features of the exact solution (i)-(vi) given in the last section suffice to apply 
the corner transfer matrix technique and thus obtain the Pa for the large but finite 
lattice. Following the working of Forrester and Baxter (1985, appendix) step by step 
we obtain 

P',(6, c )  = X ( ~ ~ - ~ " ' ~ E ( X ~ ,  Y ) ~ X , , ,  ( a ,  b, c ;  x2 ( ' -" ) /S ' ' (6 ,  c)  

P:'( 6, c )  = E ( x a ,  y ) )  X,,, ( a ,  6, c ;  x 2 ) / S " ' (  6, c )  

(3.3) 

(3.4) 
where 

r - L  

~11(b ,  c )  = X ( a 2 - r a ) ; 2  E ( x " , y ) , X , , , ( a ,  6, c ;  x ~ ' ' - ~ ' )  

E ( x " , ~ ) ~ X , , , ( U ,  6, c ;  x 2 )  

0 = l  

r -1 

S' ' ' (6,  c )  = 
a = l  

and 

(3.5) 

(3.6) 

(3.7) 

In (3.7) I , ,  1 2 , .  . . , 
and the end heights 1 1 ,  l m t l ,  1m+2 are fixed at the values 

must satisfy the nearest-neighbour constraint il, - 1,+11 = 0 or 1 

I ,  = a L+i = 6 lm+2 = c. (3.8) 
In I we transformed the combinatorial sum 3 X m  to a form suitable for taking the 

large-m limit. The results (9), ( l l ) ,  (13)-(15) of I can be written as 

3Xm(a, 6, C; 9 ) = 3 X m ( a ,  6, C) 
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where c = b f 1 and 7 = 0 for m - b + a even and  r = 1 otherwise. The symbol 

denotes the Gaussian polynomial of argument q (see, e.g., Andrews 1976). Here 
2Xm(a, b, c; q )  =E q L Y = 1 ~ l ' k - ' 4 + 2 1 / ~  (3.10) 

where the sum is the same as in (3.7) except now the nearest-neighbour constraint is 
l ! , -b+l[= 1. From Andrews et a1 (1984, equations (2.3.5) and (2.3.6)) we have the 
representation 

(Fm(a,b,c)-Fm(-a, by c) )  (3.11) a ( a - l ) / 4  2Xm(a, b, C ;  q ) = q  

where 

a(a ,  b, c )  = r ( b +  c - 1)/2 - a ( r  - 1) 

@ ( U ,  b, C )  = [bc - a ( b +  c - 1)]/4. 

(3.13) 

(3.14) 

Expressions (10) and  (12) of I for 3Xm(a, b, b) can also be written in a form 
analogous to (3.9), but we prefer the original representations. 

4. Regime I1 

From the discussion at the beginning of 9 3 it suffices to calculate P:(b, b +  1) 
(1 s b c r - 2) and  thus from (3.5) we require the large-m behaviour of X, (a ,  b, b + 1; 
q-I)  when the argument q-' is greater than 1. 

Analogous to Andrews et a1 (1984, equation (2.6.1)) we define 

,,x,(a, b, b +  1) = qm(m+')'4 n X b, b + l ;  9-l) .  

Then, together with the relation 

(3.9) becomes 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 
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Write m = 2(r - l ) M  + m,, O s  m O s  2( r - 1) - 1. Then replacing p by p + M in (4.5) 
and defining 32m as 

but 

and from Andrews et a1 (1984, equation (2.6.53)) 
u ( r - a ) / ( 4 r - 8 )  A 

2 % - 2 M - 2 p - r ( a . b ,  b + l ) - q  T u . ( u - b + m - Z M  - 2 p - . r ) / 2 .  

Here 
- -[( 1 / 2 )rr ( I  + 1 1 -uj I /  1 r - 2 )  

T U J  - T U J  

and the vaJ are defined by 

In (4.12) the E function is defined by (2.9) and 
;F 

Q ( 4 )  = n (1 -9').  
J = I  

The iiaJ have the property 
,. A 

VClJ = T U J + ( r - 2 )  

(Andrews et a1 1984, equation (2.6.45)). Hence 

- ( m o - b + r / 2 l ( ~ + r / 2 1 / !  r - 2 )  A 

x 4  Ta.1 U - b+ m,,-2p - 7 ! / 2  

In the p summation we write 

p = ( r  -2)v + cy 

Then, using the periodicity property (4.14) we have 

Y = 0, *l, +2, . . . cy = 0 , 1 , .  . . , r-3. 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

(4.17) 
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Since 32m differs from 3 X m ( q - l )  by factors independent of a, substitution of (4.17) 
into (3.3) evaluates PL'(6, 6 +  1) in terms of the ground-state variables x and y.  

To expand our result about criticality we need to convert back to the original 
criticality variable p .  We require the conjugate modulus identities 

e,(u,exp(-E)) = p ( u ,  & ) ~ ( e x p ( - 4 r u / ~ ) , e x p ( - 4 r * / ~ ~ )  (4.18a) 
e , ( ~ , e x p ( - ~ ) j = p ( u ,  ~ ) E ( - e x p ( - h u / ~ ) ,  e x p ( - 4 r 2 / ~ ) )  (4.186) 

where 

&(U, exp(--E)) = -i exp(-e/8) c ( - l ) n  
C-C 

n = - a  

xexp[-sn(n-1)/2] exp[2iu(n+l/2)] (4 .18~)  
X 

e4(u,exp(-&j)= C (-1)'' exp(-&n2/2) exp(2iunj 

p(u ,  E )  = ( 2 r / ~ ) " '  exp[(2ru -2u'- r2 /2) /&] .  
n=--cc 

(4.18d) 

(4.18e) 
To apply these transformations to the function $jQJ (exp[-8.rr2(r - l ) / r ~ ] )  we proceed 
as in Andrews et a1 (1984, equations (3.3.7)-(3.3.15)). 

Equation (3.3.2) of Andrews e? a1 (1984) can be written 
r - 3  

(4.19) r ( r -  1 ) /2+ rj - a  r - 2  Q ~ ( ~ )  = C q [ i l / 2 ) r ~ ( ~ + l ) - a i l / l r - 2 )  z 1 4  T a j  ( q ) E  (-9 z , q r ( r - 2 ) ) .  
j = O  

With 
= X 2 1 r - l )  = exp[ - 8 r 2 (  r - 1)/ r ~ ]  z = e x p [ - 8 r ( i - - l ) u / ~ ]  (4.20) 

this identity transforms to 
r - 3  

F a ( u )  =- c AaJ8,(u + [ r / r ( r  -2)][ir(r - 1) + rj - a], exp[-e/2(r- l ) ( r -2)])  r -2  j = o  

(4.23) 
The expressions (3.3) and (4.17) can be written in terms of AoJ.  Using (4.18) we find 

P r ( b , b + l ) = u a  (4.24) 

(4.25) 
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In (4.25) p = exp( - E ) ,  r = 0 or 1 according to a - b -k mo being even or odd respectively 
and OS m o C  2( r - 1) - 1. 

The variable p is the deviation from criticality parameter, vanishing linearly at the 
critical point. Critical exponents can thus be calculated by expanding (4.24) in terms 
of p. To do this for AaJ we note that F , ( u )  as given by (4.22) is a rr-periodic function 
and so has a Fourier expansion 

a2 

F, ( U )  = fa,,, exp(2rrium). (4.26) 

Substituting (4.26) into (4.21) and using the definition (4.186) of 04, we find that the 
A,, are given by 

m = - a  

Next, substitute (4.27) into (4.25) and again recall the definition (4.18b) of 04, The a 
summation can now be performed and we obtain 

r-3 a r -2  k r  ( r [ k 2 (  r -2)+2km]-m2}/B(r -1  l 2  u , = - ~ , ( ~ r a / r , p )  C C (-1) P 
r m=O k = - s  

- r i m a  rrik 
(4.28) 

rri( m - k) 
(b-mo- i )  exp - ) ( +T)/..-. 

From (4.26) and (4.22) we have 

f a , m  - 2~ P e x p ( r i m a / r )  sin[rra(m+ l ) / r ] .  (4.29) 

The small-p expansion of (4.28) is then obtained from the k=O and k =  -1 terms 
( 0 s  m r - 3) and the k = 1, m = 0 term (making use of a - b + mo+ 7 being even). 
Substituting in (4.24) we thus obtain 

I /  l6(  r - I )  m / 4 ( r - l  I 

(4.30) 

Following Huse (1984), the order parameters are just the spatial Fourier transforms 
of the Pa 

(4.31) 

From (4.30) we have 

2 T ( l +  1)a  

r r r - 1  
Pi'( 1 )  - - p p '  sin ( E)  sin ( ) exp (*( b - 1 - f,) (4.32) 

with exponent 

1[2(r- 1) -11 
8 ( r  - 1)2 

1 l S 2 r - 3  l # r - 1 .  (4.33) 

For 1 = r - 1 the order parameter (4.31) vanishes identically. 
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5. Regime I11 

Firstly we remark that regime 111 for the Rsos-n models in general has been discussed 
by Date et al (1986b), where implicit expressions for the P, are given. 

Here we will obtain explicit expressions for the P, in regime 111 of the RSOS-3 
model. From (3 .4)  we note that the argument of 3Xm is less than one. Thus from (3.9) 
we have immediately for large m 

3 X m ( a ,  b, b + l ) -  ( f 1/2  1/2 )2x,ca,  b, b + l )  (5 .1)  
4 ( IL + T / 2 )  

p = o  ( 4  , 4  ) 2 p + T  

where 

1 
7 4 2 r ( r - 1 9  2xoo(a, b, b +  1) =- q b ( b + l ) / 4 [ q - ~ b / 2 ~ ( - q ( r - Q ) ( r - l ) + r b  

Q ( 4 )  

> 42r(r-1))l .  (5.2) Q b / 2 ~  (- 4 (  r + a ) ( r -  l ) + r b  
- 4  

The case 3 X m ( a ,  b, b )  requires more work. From equations (10) and ( 1 2 )  of I ,  we 
have 

( h (  U ,  b + 1 ,  b )  - h (  -a, b + 1,  b )  1 / 4 + Q i Q  - 1 ) /4  
3 xm (a, b, b ,  - So,b + 4 

+ h(a ,  b - 1, b )  - h ( - a ,  b - 1, b ) )  (5.3) 

where 
a 

( l a  - b ' l )  (5 .4)  

( 5 . 5 )  

(5 .6 )  

h(a ,  b', b )  = q r ( r - l ) A 2 + a ( Q ,  b ' , b ) A + P i a ,  b', b )  

A = - X  

a(a, b', 6 )  = sgn(b'- a ) [ r ( b ' +  b - 1)/2- a ( r -  l ) ]  

P(u ,  b', b ) =  b t b / 4 - a ( b ' + b -  1)/4 

(5.7)  

We have used the notation 

sgn( t )  = 1 for t 2 0 and -1 otherwise (5.8) 

(5.9) ( a ;  q ) ,  = (1 - a) ( l  -aq )  . . . ( 1  -aq" - ' ) .  

In the appendix we establish the summation formula 

n=O 

where 
oo - 1  

x = ( - 4  112 9 p ) & p 2 ,  q l / 2 ) m =  ( ( - 1 ) n 4 " 2 ' 2 )  . (5 .11)  

We can express S,,(d) in terms of S , ( d ) .  Firstly we note S o ( - d )  is simply related to 
S , ( d ) .  Suppose d is even. Then by replacing p + d / 2  in ( 5 . 7 )  we have 

n = - x  

(5.12) 
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If we use the symmetry of the Gaussian polynomial 

(5.13) 

in (5.12), we deduce 

S O (  -d)  = qd’4So( d) .  (5.14) 

When d is odd we obtain the same relation. 
Now consider S A ( d ) .  For A 3 0  we can begin the p summation in (5.7) at rA, since 

the other terms vanish. Now replace p by p + rA so the p summation is again from 
zero. This gives 

S A ( d )  = So(d +2rA). (5.15) 

A similar simple agrument shows (5.15) to be true for all integers A provided 0 s  d s 
2r-1. 

Hence from (5.10), (5.14) and (5.15) 

( - l ) n q n 2 / 2 + l d + l + 2 r A l n / 2  A 2 0  (5.16) ld+2rA ) / 4  

n =a 
s A ( d ) = q  

(d+2rA) /4  f ( - l ) n q n z / 2 + ( - d + l - 2 r A ) n / 2  A < O  O S  d ~ 2 r -  1. 
l l = O  

s A ( d ) = q -  

(5.17) 

Define 

H + ( u ) =  h+(a ,  b +  1, b ) +  h+(a ,  b - 1, b )  (5.18) 

where h+ is defined as in (5.4) except that the A summation is from 0 to CO. Suppose 
a > b + 1, and substitute in the results (5.16) and (5.17). Then replacing n by n - 1 in 
h+(a ,  b - 1, b)  shows that both summands are identical but opposite in sign, so the 
only term surviving is n = 0 in h+(a ,  b+ 1, b) (since after replacing n by n - 1 the 
summation in h+(a ,  b - 1, b )  is from 1 to CO).  Hence 

5 q r ( r - l ) A ‘ - [ r ( h - a ) + a - ~ / 2 ] A  a s b + l .  (5.19) ( b2-2ab+a-1 ) / 4  

A =O 
H + ( a )  =xq 

Similarly define 

H - ( u )  = h- (a ,  b +  1, b ) +  h - ( a ,  b - 1, b) (5.20) 

where h- is defined as in (5.4) but with A summation from --cc to -1. Again substitute 
in the results (5.16) and (5.17). This time replacing n by n - 1 in h - ( a ,  b + 1, b) shows 
both summands are equal but opposite in sign, so the only surviving term is n = 0 in 
h-(a ,  b - 1, 6). Hence 

a 3 b + l .  (5.21) (b2-2ab+a- l  ) / 4  2 q r l  r - l  ) A 2 - [  r (  b-a ) + a  - r /  2]A H - ( a )  = xq 
A = - W  

Adding (5.20) and (5.21) together we have 

h(  U, b + 1, b )  + h(  a, b - 1, b )  H + (  U )  + H - (  U )  

> qzrcr-l’) .  
( b 2 - 2 a b + a - 1 ) / 4  l r - a ) ( r - l ) + r l b - l / 2 )  

= x9 E ( q  (5.22) 
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The cases a < b+ 1 are handled in the same way, with (5.22) again holding. The 
only exception is the case a = b, when the left-hand side of (5.22) is to be replaced by 

(5.23) q - ( a 2 - a + 1 ) / 4 +  h ( a ,  a + 1,  a)+  h(a ,  a - 1,  a) .  

Using these results, we have from (5 .3)  the large-m evaluation 

I 4 z r ( r - 1 ' )  
o ( o - l ) / 4 + b 2 / 4 ~ q - n ( b - I / Z ) / 2 ~  ( r - a ) ( r - l ) + r ( b - l / Z )  

a ( b  - 1 / 2 ) / 2 ~  

3 X m  (a, b, b )  X4 ( 4  

9 4 2 ' ( r - 1 ) ) l *  (5.24) 

Substituting (5.2) and (5.24) into (3.4) evaluates Py ' (b ,  b +  1 )  and Py'(b,  b )  
respectively. From the work of Andrews et a1 (1984), we expect that these results can 
be further simplified via identities expressing the denominators as single theta functions. 
Indeed, the necessary result is contained within the proof of theorem (3.2.1) of Andrews 
e? a1 (1984). We have the following. 

- ( r+a  ) (  r - 1 ) + r (  b - 1 / 2 )  
( 4  

Theorem 5.1. Let x, y be real numbers such that 1x1 < 1 and 
y m / 2  = - -EXr  E = * l  (5.25) 

where m, r are positive integers and 1 s m < 2r; then for all complex numbers z 
r-1  

) z a ~  ( x a ,  y )  E ( E m - l x ( 2 r - m ) ( r + a )  2r c X ( 1 / 2 ) a ( a - l )  9 X 2 r ( 2 r - m )  
a = - ( - l )  

= E ( - z ,  x ) E ( z - ' , y / x ) .  (5.26) 

Choosing m = 2, E = - - 1 ,  y = x r  and z = x - ~  gives the summation theorem for the 
denominator of PL"(b, b + 1 ) .  To see this note that 

9 , x 4 r ( r - ' ) )  (5.27) E ( - X 2 ( r - l ) ( r + a ) - Z r b  x 4 r ( r - 1  1) = E ( - x 2 ( r - l ) (  r -o )+2rb  

and 

E ( x - a ,  y )  = - X - a E ( X o ,  y ) .  (5.28) 

The summation theorem then follows by grouping the (-a, a )  terms together. Similarly, 
the choice m = 2, E = - 1 ,  y = x r  and z = x - ( ~ - " ~ )  gives the required summation formula 
for the denominator of P:'(b, b ) .  

After using the conjugate modulus identities (4.18) our evaluations of the Pk" 
become 

) O3 (.rra/2r - .rrd / (2r - 2), pr '4 ( r - ' )  ) - O3 ( .rra/ 2 r + .rrd / ( 2 r - 2) ,  p "'('P~) 

R, e,( vd, p '1 el ( r d  / ( r - 1 ), p r ( r - l ) )  
Pc'( b, C) = 

(5.29) 

where 

d = ( b +  C -  1)/2 c = b , b + l  R, =2r/O,(na/r,p) (5.30) 

and 

@4(u + .rr/2, P) = &(U, P). (5.31) 

Note that for c = b + 1 this is, up to a factor of f, identical to Pa (b ,  b + 1 )  for regime 
I11 of the RSOS-2 model (Andrews et a1 1984, equation ( 3 . 3 . 1 8 ~ ) ) .  
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From (5.29), for small p 

sin( T U /  r )  
rs in[rrd/(r- l ) ]  

2 r - 3  c p ( n 2 - l ) / s ( r - l )  . P t ’ (  6, C )  - sin( n r a  / r ) sin[ n r d  / ( r - 1 ) ][ 1 + 0 ( p ) I .  
(5.32) 

There are 2r - 3 different phases (up to translations) which can be labelled by D = 2d, 
( D  = 1 ,  2 , .  , . , 2r - 3) .  Following Huse (1984) we take the order parameters in regime 
I11 as 

1 2 ( r - 1 )  

Ra(k)=-  P t ’ (  D )  sin[ 7rD/2( r - l ) ]  sin[ r D ( k  + 1)/2( r - I ) ]  
2(r-1)  D=1 

for integers 1 s k s 2( r - 2) .  From (5.32) we have as p + 0 

Ra(k) =-s in( ra / r )  P P h  s i n [ ~ a ( k + l ) / r ]  
2r 

where the critical exponents are 

(5.33) 

(5.34) 

( k +  I )*  - 1 
k =  1 , 2 , .  . . , 2 ( r - 2 )  k f r - 1 .  (5 .35 )  

8(r-1)  P k  = 

For k = r - 1 the order parameter (5 .33)  vanishes identically. 

6. The limit r + m  in regime 111 

Consider the parametrisation in terms of the conjugate modulus variables (2.8) for the 
weights in regime 111 of the RSOS-3 model. We noted in I that in the limit r, a ,  b + a?, 
( a  - b )  = constant these weights reduce to those of the three-state vertex model as given 
by Sogo et a1 (1983). When viewed as a solid-on-solid model, the three-state vertex 
model is of interest for the richness of its phase diagram (Glaus 1986, Truong and den 
Nijs 1986) which is related to that of the spin-1 quantum chain. 

From (5.1) and (5.24) we can write down the expressions for height probabilities 
in the bulk along the exact solution manifold. We have 

, X I .  (6.1) pa ( E = x( 1 / 2 ) (  a2- E a  )/ E ( - x( 1 - E  ) / 2  

Here E is a phase label, equal to zero when the phase has an underlying ground state 
with heights along the centre row 0000..  . , and equal to one when the ground state 
has heights along the centre row 01010,. . . In the isotropic case ( w  = x’ / * )  when 
A = B, C = D (recall figure l ) ,  the parameter x is given in terms of the Boltzmann 
weight A by 

(6.2) 

(6.3) 
which marks the onset of a rough phase in which the Pa are zero for each a. We are 
interested in the singular behaviour of Pa and 

A = exp( - J / k ,  T )  = x ” ~ / (  1 + XI”). 

J /  kB T- ,  log 2 

In the limit x + 1 -  the model becomes critical. From (6.2) this corresponds to 

5 

( h 2 ) =  1 a2Pa 
a = - x  

(6.4) 
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Defining the deviation from criticality parameter by 

t = ( T - T,)/ T, 

with T, specified by (6.3) we have from (6.2) 

a log x - -(2 log 2)'/21t1'/2. 

Using the formulae 

we have 

P, -(-log x / 2 r ) ' I 2  = [2(2 log 2) ' /2/~] ' /21t1' /4 

( h 2 ) -  (-log x)-' = [4(2 log 2)1/2]-'/t/- ' /2. 

(6.7) 

These results are independent of the phase, and are identical to those obtained for the 
BCSOS model (Forrester 1986, equations (19)-(22) after some corrections to the working 
therein) except for a factor 4 in (6.8). 

7. Comparison of the critical exponents with those of the RSOS-2 model and conformal 
field theories 

From the results of Andrews et a1 (1984), Huse (1984) calculated the critical exponents 
for the RSOS-2 model. In regime 11, where there are r -2 phases with ( r  -2) x 1 
symmetry, the critical exponents are 

k( r - 2 - k )  
k = 1,2, . . . , r - 3 

'k = 2(r - 212 (7.1) 

2 - a = r / ( r - 2 ) .  (7.2) 

In regime I1 of the RSOS-3 model, there are 2( r - 1) phases with 2( r - 1) x 1 symmetry, 
and we calculated (4.33) 

k[2(r - 1) - k]  
8 ( r -1 )2  k = 1 ,2 , .  . . , 2 r - 3  k # r - 1 .  (7.3) P k  = 

For k = r - 1, the order parameter vanishes identically, which seems to be due to an  
extra symmetry of the ground state-the height at site 1 of the unit cell is unchanged 
by the rearrangement 1 + 2r - 1 - 1. From the inversion relation method (see, e.g., Baxter 
1982) we can calculate the free energy in regime I1 from the inversion relation (2.12) 
and  thus obtain 

2-  CK = r / ( r  - 1). (7.4) 

Replacing r by 2r in (7.1) and (7.2) we can go from the RSOS-2 results to the RSOS-3 
results (7.3) and (7.4) (apart from the vanishing order parameter). This makes good 
sense, considering the type of ordered phases (( r - 2) x 1 in the former; 2( r - 1) x 1 in 
the latter), and  the further symmetry of the unit cell in the RSOS-3 case. The exponent 
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T~ = 2 P 1 / ( 2  - a )  was identified by Zamolodchikov and Fateev (1985) as that of a 
conformal field theory with 2r-2 symmetry and central charge 

(7 .5)  c = 2(  r - 3)/r.  

In regime I11 of the RSOS-2 model the critical exponents are (Huse 1984) 

(7 .6 )  

2 - a = r / 2  (7.7)  
while in regime 111 of the RSOS-3 model we have (5 .35)  

( k + 1 ) 2 - 1  
k = 1 , 2 ,  . . . ,  2 ( r - 2 )  k # r - 1  

8 ( r - 1 )  P k  = (7 .8)  

2 - a = r  

(the latter result can be deduced from the inversion relation (2.12)).  For k = r - 1 the 
order parameter vanishes identically. The exponents 9, = 2P1/ (2  - a )  for regime 111 
of the RSOS-2 model have been identified by Huse (1984) as those of the conformal 
field theory with central charge 

c = 1 - 6 / r (  r - 1)  (7 .9)  
and no special symmetries linking the phases (the exponents for such a field theory 
were given by Friedan et a1 (1984)).  

In regime I11 of the RSOS-3 model, it has been stated by Date et a1 (1986b) that 
the critical exponents v1 are that of a conformal field theory with central charge 

(7 .10)  

Note that for r = 3 we have c = 1 which is the central charge of the eight-vertex model. 
That the r = 3 case of the RSOS-3 model is a special case of the eight-vertex model can 
easily be seen directly from the definition of the model. 

c = 4-3 /r (  r - 1) .  

Appendix 

Throughout we will adopt the notation (5 .9)  as well as 

( a ;  q ) n  = ( a ) ,  
and we will introduce the q-hypergeometric series 
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Theorem AI.  For complex numbers z and (9) < 1 

The identity (A4) follows from (A6) by choosing z = qd, d 2 0 ,  replacing q by q' l2  

and noting 

(aq" ;  q ) a = ( a ;  q) .o l (a ;  q ) n  n 2 0 .  (A7) 

Prooj Denote the left-hand side of (A6) by S(z).  Then using the relation (A7) we 
can write 

which can easily be identified as 

By an identity of Sears (1951, equation (10.1)) with a = -zq, b = -zq2, c = zq, 
e = 2 q 3 ,  f =  z2q2) we then have 

Using the definition (A2) and some simple identities this becomes 

where 

By lemma 1 of Andrews (1966), with k = 2 ,  a = zq, b = -4, c = zq2 and t = zq, we have 

However, by the q analogue of Whipple's theorem (see Slater (1966), equation (3.4.1.5) 
with d and g+m, e = -f= (zq)"', c = q and a = z q ) ,  the function in (A13) is 
given by 

Substituting (A15) in (A14) we obtain, after some simple manipulation, the right-hand 
side of (A6). 
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